

Planning problems in grids with Distributed Energy Resources

KU Leuven, University of Leuven, Belgium http://www.esat.kuleuven.be/electa

Edwin Haesen Johan Driesen

Overview

- ✓ Introduction
- ✓ Problem Formulation
- ✓ Deterministic approach
- ✓ Evolutionary Algorithms
- ✓ Robust Multi-objective Planning Tool
- √ Test Cases
- ✓ Alternative grids
- ✓ Conclusion

Typical questions to solve

- Customer
 - Which type/size of DG unit will make me the most money?
- DSO
 - How much DG can you put in a grid or feeder, without having to upgrade it?
 - ⇒ Benchmarking?
- Utility
 - When expanding: what is the best next spot for a DG unit?
- Government
 - Where to best spend those subsidies?
 - ⇒ Benchmarking?
- Other
 - ⇒ Is this microgrid self-sustaining?
 - ⇒ economic + technical optimization problems

Planning problem

What is the impact of a DER planning scheme?

- Type of DER: renewable, CHP, diesel...
- Size of the unit
- Location in the grid
- Operation mode: peak shaving, market incentives, in coordination with storage...

Useful for

- Customers: to improve selfsustainability
- Producers: as diversification of production park
- Grid operator or regulator: benchmarking

Multiple objectives

- Technical: losses, stability, voltage profile, unbalance...
- *Economic:* investment, revenues...
- Risk-averse: deviations due to uncertain future fuel prices, weather conditions, load growth...

Problem Formulation

$$V_{\text{node}} \leftarrow \text{flat profile}$$

while $\varepsilon > \varepsilon_{\text{max}}$

$$\text{do} \begin{cases} I_{\text{node}} = f_{\text{load model}} \left(S_{\text{node}}, S_{\text{DER}}, V_{\text{node}} \right) & \text{(a)} \\ I_{\text{line}} = A \cdot I_{\text{node}} & \text{(b)} \\ V_{\text{node}} = V_{\text{grid}} - B \cdot I_{\text{line}} & \text{(c)} \\ \mathcal{E} = g_{\text{error}} \left(S_{\text{node}}, I_{\text{node}}, V_{\text{node}} \right) \end{cases}$$

distribution system load flow equations

technical performance

- line losses
- voltage profile
- unbalance

non-linear load model --> iterative procedure 'backward-forward sweeps'

planning problem

- objective: e.g. line loss minimization
- variables: location & size of DER units
- constraints: budget & voltage deviations

nested optimizations in sweep algorithm

Planning Issues: optimization example

Main problem (non-linear)

Sequential quadratic optimizations (MIQQ)

Branch and bound search across relaxed QP problems

Optimization Iteration

- Quadratic objective
 - RI² → multiple nodes, DER types, time frames
- → Quadratic constraint voltage amplitude

iteration of MIQQ optimizations

Test Case

PV panel and CHP unit placement

IEEE 34-bus radial grid

optimal versus random placement

Conclusions:

Random deployment: much higher losses low %DER → grid support: best at end of feeders high %DER → node support: relief high loads

Planning Issues

- Multiple objectives
- Complex objectives/constraints:

e.g. reliability enhancement, fault currents (urban areas),...

SAIFI, SAIDI, CAIFI, CAIDI, ASAI, ASIFI, ASIDI, ...
(IEEE1366) ⇒ which index? translated to cost?

- What is known?
 - ☑ deterministic

 - ✓ fuzzyVoltage constraints (⇒EN50160?)
 - ✓ uncertain spatial load growth, regulation, ...

→ A robust, multi-objective optimization is needed!

Deterministic Optimization

Uncertainties remain...

- multiple objectives
 - → acquire trade-off front
- load models?
 - → cause of non-linearity, but not the main uncertainty
- load profiles, weather conditions, load growth, ...?

- Deterministic optimization obscures proper planning outcomes
- ⇒ A robust, multi-objective optimization is needed

Multiple Objectives

Multiple Objectives

Pareto Strength

- No use of weight factors
- Search for non-dominated topologies = Pareto Optimal Front
- ⇒ Pareto Strength = #dominated topologies
- ⇒ Fitness = sum of Pareto Strengths of dominating topologies
- (Possible density adjustment)

Test cases

Placement

- PV panels
- micro-CHPs
- wind turbines

Objectives

- Minimize line losses
- Maximize DER based energy production

Constraints

- ⇒ ∆V
- DER installation budget

$$(b_1 > b_2 > b_3 > b_4)$$

(Non)-Convex?

Convex

- local optimum = global optimum
- reliable and efficient algorithms exist
- many apparent non-convex problems can be transformed into convex
 - » line loss minimization
 - » optimal microgrid configuration?

Non-convex

- application of evolutionary algorithms to search objective space
- non-guaranteed convergence
- high flexibility in function evaluation
 - can handle stochastic data
- multi-objective algorithms
 - acquisition of all trade-offs in one run

Genetic Algorithms

Simulated Annealing

produce variations j & lower temperature c

$$\mathbb{P}_{c}(accept(j)) = \{ \begin{matrix} f(j) \leq f(i) & 1 \\ f(i) < f(j) & e^{\frac{f(i) - f(j)}{c}} \end{matrix}$$

• Particle Swarm, Ant colony, Tabu search, ...

- Population based
- Transitions inspired by laws of biology
- Able to cope with complex problem formulations
 - No derivatives
 - Discontinuous functions
 - Multiple objectives
 - Stochastic formulation
- No guaranteed convergence to global optimum
- Mathematical foundation?

"There ain't no such thing as a free lunch"

no indication EAs are less reliable planning procedure has to be problem specific !!

Multiple Objectives

 \triangleright Aggregation ε - constrained

parameter-oriented scaling-dependent

Vector evaluation alternating objectives

⇒ Pareto optimalityfitness ~ Pareto ranking

set-oriented scaling-independent

Stochastic GA

Stochastic GA input

historical data needed!!

Stochastic GA input

Modeling of load profiles

classification year season day hourly hourly hours max/min ...

residential load during May – 15min samples (Wh)

Stochastic GA input

Pearson generalized functions

- Probability density function fitting of empirical data
- pdf is characterized by the first 4 moments
- \circ (β_1 , β_2) indicates most appropriate function

mean value
$$\mu_1$$
 variance μ_2 skewness μ_3 kurtosis μ_4 μ_4 μ_2 μ_4 μ_4 μ_2 μ_4 μ_4 μ_2 μ_4 μ_2 μ_3 μ_4 μ_4 μ_4 μ_2 μ_3 μ_4 $\mu_$

single residential load

large time-frame: exponential Short time-frame: uniform 3-hour blocks: log-normal

aggregated loads

spatial/temporal load growth?!

Stochastic GA search pattern

Heuristics

- Initial population
 - diverse (schema theory)
 - deterministic optimization
- □ Chromosome structure and crossover
 - numbering
 - multiple crossover points
- Mutation
 - not random
 - 3 operators
 - » Creation/deletion
 - » Resizing
 - » Location switching
- Convergence

Stochastic GA search pattern

Two objectives

- **⇒ DER cost**
- ⇒ Line losses (NPV) ⇒ DER lifetime? Interest rat

		i = 8%	i = 5%
4	n = 10 years	case 1	case 2
	n = 20 years	case 3	case 4

- Chaotic search of aggregated objective
- Slower convergence of SPEA

Stochastic GA search pattern

Attributes

- **□ Deterministic** straightforward
- **□Stochastic** percentile values

- □ Fuzzy
 in final decision making
- □Uncertain → risk scenario approach: e.g. minimal regret

Stochastic GA output

Decision making strategies

'popular' techniques: e.g. fuzzy logic, game theory (out of scope)

Pareto Front Analysis

test case:

- » 30 bus electricity grid
- » non-fully deployed gas distribution grid
- » integration of PV panels & micro-CHP units
- » minimize {line losses, electric energy import,
 DER installation cost, gas grid investment}

conflicting, related, uncorrelated objectives?

Stochastic GA output

- two objectives ⇒ simple visualization
- ≥3 ⇒ ?
- Identify strongest trade-offs

Stochastic GA output

Principal Component Analysis

→ Reduce #dimensions of the Pareto set S

- ✓ 2 out of 4 objectives coincide⇒ 3 real attributes
- ✓ improvement in two attributes= degradation of third

Example storage unit integration

Integration of small-scale Li-ion battery units in a LV grid with DG

Variables

battery power & energy rating operation mode: threshold prices at balancing market

Objectives

- ☑ Installation cost (min)
- **☑** Voltage deviation (min)
- **☑** Energy dependence (min)
- ☑ Line losses (min)
- **☑** Conversion losses (min)
- ☑ Revenue at balancing market (max)

Loads

residential/commercial

DG

wind turbines PV panels micro-CHP

Example storage unit integration

- \Box Energy dependence (= 1 E_{import}/E_{load})
 - → Wide trade-off
 - → No perfect match DG-load

- ☐ Voltage deviations (95-percentile)
- ☐ Energy dependence
 - → correlation
 - → accuracy improvement visible

Example storage unit integration

Petal diagrams

visualize

- multiple
- normalized criteria
- ☐ of specific solutions

Principal Component Analysis

Storage operation

Determine optimal allocation of storage energy for

- □ balancing revenues
- □ ancillary services
- □ energy independence
- **...**

Conclusion

Long-term DER planning is analyzed

- Traditional optimization
 - ⇒ deterministic
- A new planning scheme is proposed
 - Multi-objective: search for trade-offs
 - ⇒ Robust: nested MC trials in an evolutionary algorithm
- Convex vs. non-convex: No free lunch

Future Work in planning

- ⇒ Dispatchable DER sources: link to (short-time) control
 - Gas turbines, Storage units (accepted CIRED paper)
 - Short-term planning vs. long-term planning
- **⇒** Stability issues
 - grid reliability
- Deterministic planning
 - useful for initialization, convergence check

Extra: are local DC-grids helping?

- Many DG unit have a power electronic frontend performing a DC/AC conversion
- Many loads
 (power supplies)
 contain a AC/DC
- Connect using a DC-connection?

Why (not) DC?

- Advantages of DC
 - ⇒ Better use of conductors (no skin effect/proximity effect)
 - ⇒ No reactive power
 - Only resistive voltage drops
 - ⇒ Lower transfer losses
 - No standards yet: voltage choice still open

- Disadvantages of DC
 - → More dangerous in case electrocution?
 - ⇒ Hard to interrupt in switchgear
 - No large rotating generators (do we need them?
 - More corrosive
 - Standardized equipment for AC

DC distribution new?

- Edison started that way
- On-board vehicles: DC grid
- Several experiments around the world, e.g. Japan
 - ⇒KUL proposal (IECON06 paper)

Assessment for in-house grid

- Model of a house was derived and assessed for several layouts and voltages levels
- Simulations of daily cycles

Conclusion on DC-grids

- Only small increase in efficiency
 - ⇒AC in-house grids already have low losses
- Safety issues can be solved
 - Appropriate grounding
 - Switches still necessary with most loads 'always on'?
- Problem is relatively bad partial load efficiency of DC/DC converters
 - ⇒ Push for advanced designs?

Thank you for your attention!

Questions?

